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Introduction

Gauge theories are supposed to rule the fundamental interactions in our actual description
of Elementary Particles. The requirement of a local symmetry (the symmetry transforma-
tions depend on space-time coordinates), forces us to introduce new particles, the gauge
vector bosons, which carry the interaction between the other matter particles (the scalar
bosons and the spin 1/2 fermions).

The simplest gauge theory which one can think of is the Abelian U(1) gauge theory,
which has been widely studied with the help of perturbation theory. The Renormalization
Group (RG) improved running coupling constant is found to be small in the low energy
regime and therefore the theory is suitable for perturbation theory. It describes Quantum
Electrodynamics (QED) with outstanding precision, but it was found useless to describe
the strong interactions. Indeed, it predicts free charged states (as for example electrons
and positrons) and long range interactions, while for strong forces colored free states (like
free quarks) have never been found and the interaction is found to be short-ranged (the
range of the interaction is of the order of the femtometer, the dimension of the nuclei).

The introduction of non-Abelian gauge theories elegantly overcomes these problems: the
RG investigation indeed reveals that the conclusions drawn for the U(1) case are not
valid any more. Non-Abelian gauge theories are intrinsically more difficult to study since
perturbation theory cannot be used to understand the behavior of strong forces in the low
energy regime. Non-Abelian gauge theories experience the so-called asymptotic freedom:
the running coupling constant tends to zero in the high energy regime and in this situation
experiments are well described by the results of perturbation theory. In sufficiently high
energy collisions, the quarks which protons and other hadrons are made of, act more or
less as if they were free. However, in the infrared (IR) regime the RG flow is not trivial
and perturbation theory cannot be applied.

A great effort has been done to find a new approach to study this regime and to see if the
theory actually predicts as fundamental states colorless bound states and the interaction
is confined inside these bound states. This is not trivial at all and, apart from some
non-perturbative results, the only practicable way is to set up a numerical computation.
Since computers work only with finite quantities, when we set up a simulation we need to
discretize space-time. The simplest way to do this is to put the theory on a (hypercubic)
lattice. In this way we manually introduce an ultraviolet (UV) regularizator, the lattice
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spacing a. Since we can only deal with finite lattices, we also introduce an IR regularizator,
the lattice dimension L (we can consider different dimensions in the space and time
directions).

When we introduce the UV cutoff a we need to pick up a theory whose trivial contin-
uum limit a→ 0 reproduces the initial gauge theory originally defined in the continuum.
However, the choice of such a regularized theory is not unique, and a naive discretiza-
tion sometimes turns out to be impossible (as in the very important case in which one
introduces dynamical quarks). Once the theory has been correctly discretized and the
physics on the lattice has been studied, it is then necessary to take the continuum limit
in order to obtain results on the continuum physics. This is a non-trivial task, both from
the theoretical and the computational point of view since it requires RG calculations and
a high computational effort. In principle one should also take an infinite lattice limit or at
least study finite size effects by varying the lattice dimensions. This again requires very
long computational time.

For this exercise, I studied the general theory of lattice gauge theories and how to apply
it to set up a simple numerical computation. I restrict myself to the study of pure gauge
theories, that is of theories with only the gauge field, without the fermionic content.
Both Abelian and non-Abelian lattice gauge theories were taken under examination and
the continuum limit was studied in the limit of the available computational power. The
non-zero temperature case is also briefly discussed.

In sec. 1 we will review the basic concepts of lattice gauge theories, in sec. 2 we will discuss
the numerical techniques used and finally in sec. 3 we will present the results obtained
and compare them with the known ones.

1 Gauge Theories on the Lattice

1.1 Gauge theories in the continuum

Let us consider the action of a single free spin-1/2 massive fermion (a quark) in d space-
time dimensions (from now on, all the analysis will be performed considering imaginary
euclidean time):

SF [ψ, ψ̄] =

∫
ddx ψ̄ (γµ∂µ +m)ψ . (1)

Here ψ is a Dirac four-component spinor and γµ are the Dirac matrices satisfying the
Clifford algebra {γµ, γν} = 2δµνI. We now want to introduce the gauge interaction. First
of all we consider N of such fermions labeled by the index A (color) and we notice that
the resulting theory is invariant under the global action of the group SU(N)

ψA(x)→ ΩABψB(x) , ψ̄A(x)→ ψ̄B(x)(Ω†)BA . (2)

From now on, we will use matrix notation, without explicitly writing the color indices.
When we promote the action of SU(N) to be local, the presence of the derivative term will
spoil the symmetry. We are forced to introduce a new bosonic vector field to compensate
and restore the symmetry. The following Lagrangian:

SF [ψ, ψ̄] =

∫
ddx ψ̄ (γµ(∂µ + igAµ(x)) +m)ψ , (3)
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is invariant under local (space-time dependent) gauge transformations

ψ(x)→ Ω(x)ψ(x) , ψ̄(x)→ ψ̄(x)Ω†(x) ,

Aµ(x)→ Ω(x)Aµ(x)Ω(x)† +
i

g
(∂µΩ(x)) Ω(x)† .

(4)

Here the gauge field Aµ(x) are N × N hermitian traceless matrices and the factor g is
the (bare) interaction parameter. We finally introduce a term which describes the free
propagation and the self-interaction of the gauge boson. The only renormalizable, gauge
invariant term is the following:

SG[Aµ] =
1

2

∫
ddxTr [Fµν(x)Fµν(x)] ,

Fµν(x) = ∂µAν(x)− ∂νAµ(x) + ig [Aµ(x), Aν(x)] .

(5)

The quantity Fµν(x) is called the field strength. Any constant factor in front of SG may
be reabsorbed in the constant g.

The gauge field Aµ(x) is hermitian and traceless and the gauge transformation preserves
these characteristics. Therefore it is an element of the Lie algebra su(N) and can be
parametrized using the algebra generators

Aµ(x) =

N∑
a=1

Aaµ(x)T a . (6)

The fields strength too, can be represented in the same way and a simple calculation
reveals that

Fµν(x) =

N∑
a=1

F aµν(x)T a ,

F aµν(x) = ∂µA
a
ν(x)− ∂νAaµ(x)− gfabcAbµ(x)Acν(x) ,

(7)

where the fabc are the structure constants of the Lie algebra su(N). The last term of
eq. (7) clearly shows the presence of self-interaction of the gauge field. These terms are
not present in the Abelian case and are responsible for confinement of color. They also
make pure gauge theories highly nontrivial.

1.2 Discretization of gauge theories

As already discussed, to perform a numerical study we need to regularize the theory by
discretizing space-time. We consider a lattice Λ = {n = (n0, ~n) |n0 = 0, . . . , Nt − 1; ni =
0, . . . , N − 1} with lattice spacing a and we denote with µ̂, µ = 1, . . . , d the fundamental
vectors on such a lattice. We place the fermionic degrees of freedom on the sites of such
a lattice, ψ(n), ψ̄(n), n ∈ Λ. The action for a free fermion on the lattice may be written
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as follows1:

SF [ψ, ψ̄] = ad
∑
n∈Λ

ψ̄(n)

(
d∑

µ=1

γµ
1

2a
(ψ(n+ µ̂)− ψ(n− µ̂)) +mψ(n)

)
. (8)

Here the integral is replaced with a sum over the lattice sites (the dimension is recovered
with the help of the dimensionful lattice constant a), while the derivative is replaced by
its discretized version.

The gauge transformations act again as a rotation of the color indices of the quark field.
On the lattice we choose an SU(3) matrix for each lattice site n ∈ Λ

ψ(n)→ Ω(n)ψ(n) , ψ̄(n)→ ψ̄(n)Ω†(n) . (9)

Again we are forced to introduce the gauge field in order to restore the symmetry of the
derivative term in the action. The gauge variables are placed on the links of the lattice
and they possess an intrinsic orientation. The field Uµ(n) is on the lattice link between
site n and site n + µ̂ pointing in the µ̂ direction. The link variable U−µ(n), however, is
not independent since U−µ(n) = Uµ(n− µ̂)†. The gauge transformations act on the link
variables as follows:

Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n)Ω(n+ µ̂)† ,

U−µ(n)→ U ′−µ(n) = Ω(n)U−µ(n)Ω(n− µ̂)† .
(10)

The following action is invariant under this set of transformations

SF [ψ, ψ̄, U ] = ad
∑
n∈Λ

ψ̄(n)

(
d∑

µ=1

γµ
1

2a
(Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)) +mψ(n)

)
.

(11)
Notice that we can formally recover the continuum action by introducing the algebra-
valued lattice gauge fields Aµ(n) through Uµ(n) = exp(iaAµ(x)), expanding to order a
and taking the naive limit a → 0. This is a minimal requirement, but it is not enough,
as already discussed. However, ignoring more subtle issues, we can already see that
the link variable is essentially the lattice version of the gauge transporter (path-ordered
exponential integral of the gauge field Aµ) from site n to site n+µ̂. When we replace Uµ(n)
with exp(iaAµ(x)) we are actually approximating the integral along the path between n
and n + µ̂ with aAµ(x). This approximation is valid at order O(a). The link variables
Uµ(n) are group variables and can be taken as fundamental objects which are integrated
over in the path integral. These variables turn out to be particularly suitable for the
lattice computation.

1.3 The Wilson action

Consider an ordered path P in the lattice starting from n0 and ending in n1. Consider
then the ordered product of the link variables along this path

∏
(n,µ)∈P Uµ(n). Under a

1Actually, after a closer look, this naive discretization is found to be wrong. Even if in the naive
continuum limit a → 0 we actually recover the correct continuum action, if we compute the propagator
in this lattice description we would find many poles representing spurious particles, not present in the
original continuum formulation. This problem can be overcome using a more clever discretization, however
we will not exploit the details of this procedure, since the numerical study will involve only a pure gauge
theory.
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gauge transformation this object will transform as

∏
(n,µ)∈P

Uµ(n)→ Ω(n0)

 ∏
(n,µ)∈P

Uµ(n)

Ω(n1)† . (12)

All the other gauge matrices along the path cancel out and the only left are the ones
corresponding to the initial and final site. It is clear now that the trace of a product
around a closed loop L is a gauge invariant quantity2. Such an object is called a Wilson
loop

W [U ] = Tr
∏

(n,µ)∈L

Uµ(n) . (13)

The shortest, more fundamental Wilson loop is defined along a single plaquette

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂)

= Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†Uν(n)† .
(14)

Using plaquette variables we can build the pure gauge action

SG[U ] =
2

g2

∑
n∈Λ

∑
µ<ν

Re Tr [I− Uµν(n)] . (15)

This form of the action is known as the Wilson action. As before, it is easy to show that
in the naive continuum limit a→ 0 this expression gives back the usual pure gauge action,
eq. (5).

With the pure gauge and the fermionic action that we introduced in this section, we can
write the (Euclidean) correlator of any observables O1 and O2 as a path integral

〈O2(t)O1(0)〉 =
1

Z

∫
D[ψ, ψ̄]DU O2[ψ, ψ̄, U ; t]O1[ψ, ψ̄, U ; 0] e−SF [ψ,ψ̄,U ]−SG[U ] ,

Z =

∫
D[ψ, ψ̄]DU e−SF [ψ,ψ̄,U ]−SG[U ] .

(16)

The fact that we can define the theory through this path integral is fundamental for
the numerical study. In this way we can set up a Monte Carlo simulation treating the
(euclidean) path integral as the partition function of a d-dimensional statistical system.

1.4 Wilson loops, Polyakov loops and the static qq̄ potential

We already defined the Wilson loops in eq. (13), we now want to give the physical inter-
pretation of such quantities. We will consider a rectangular Wilson loop embedded in a
fundamental plane of the lattice containing the temporal direction. This loop is there-
fore made of two temporal transporters T (~n, nt), T (~m, nt) and two spatial transporters

2This is not the only possibility. Another gauge invariant quantity can be constructed attaching a
fermion and its antiparticle at the end and at the beginning of the path. We are now interested in pure
gauge object in order to build the pure gauge action.
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S(~m,~n; 0), S(~m,~n;nt). With a suitable gauge transformation it is possible to fix all the
link variables along the temporal transporters to the identity I

〈W [U ]〉 = 〈Tr[S(~m,~n; 0)S(~m,~n;nt)
†]〉 . (17)

For large extent of the spatial direction of the lattice T , this correlator can be expressed
in terms of the Hilbert space states and operators (here denoted with a hat) as

〈Tr[S(~m,~n; 0)S(~m,~n;nt)
†]〉 =

∑
k

〈0|Ŝ(~m,~n)|k〉〈k|Ŝ(~m,~n)†|0〉e−tEk . (18)

It is possible to argue that the states |k〉 with non-vanishing overlap on the state S(m,n)†|0〉
are states which contain a static quark-antiquark pair located at sites ~n and ~m. The low-
est eigenenergy E0 will therefore correspond to the static potential V (r) between the qq̄
pair at a distance r = |~n− ~m|. Higher energy states will correspond to more complicated
states, for example containing additional particle-antiparticle pairs generated by vacuum
polarization effects. The contribution of these states to the propagator and therefore to
the Wilson loop is suppressed by an exponential factor e−nta∆E , with ∆E = Ek − E0.
Therefore, for sufficiently high values of nt, we should be able to extract the static po-
tential from the average value of the Wilson loops. With this considerations we can
understand that it is possible to have an important evidence of confinement even within
the pure gauge theory, without introducing dynamical fermions.

Another important gauge invariant quantity is the Polyakov loop. If we consider periodic
boundary conditions in the time direction of our lattice we can consider a Wilson loop
made by a single time transporter that winds around the time direction. When we take
the trace we again have a gauge invariant quantity. Such a loop is called a Polyakov loop

P (~m) = Tr

Nt−1∏
j=0

U0(j, ~m)

 . (19)

If we consider two Polyakov loops at positions ~n and ~m with opposite orientations, and we
go in the particular gauge in which the link variables of the spatial transporter connecting
(~n, 0) and (~m, 0) are set to unity, then it is clear that the product of the two Polyakov
loops corresponds to the Wilson loop with time extension equal to the full time extension.
Since Polyakov loops and Wilson loops are gauge invariant, it is clear that Polyakov loops
can as well used to extract the static qq̄ potential. Polyakov loops are also important in
the case of non-zero temperature, that we will discuss in the following.

We are interested in the nature of the static potential V (r) to understand if the theory
shows confinement. We can get some information on V (r) by performing strong and weak
coupling expansions. It actually turns out that on the lattice it is much easier to perform
a strong coupling expansion and it is relatively simple to see that in this regime the static
potential is linear in the distance r

V (r) ∼
g→∞

σr , (20)

with some constant σ, sometimes called the string tension. On the contrary, when g → 0,
the self interaction of the gauge field is less and less important (see eq. (7)) and therefore
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we expect the static potential to get closer to the one of QED, that is the electric potential
∼ 1/r. With these considerations in mind, we can parametrize V (r) as follows

V (r) = A+
B

r
+ σr . (21)

Notice that if σ is different from zero, when we try to separate our two static quarks the
potential between then grows and it finally diverges when we put the two color charges at
infinite distance. This is of course unphysical: in real world, when dynamical quarks are
separated far apart and the potential between them increases, the creation of new qq̄ pairs
from the vacuum will be energetically favorable, these new quarks will screen the gauge
potential and new bound states will be created (this process is the base of hadronization).
Nevertheless, σ can be considered as an order parameter3 to describe the confining and
non-confining phase of the lattice theory. The string tension σ will be the main object of
our numerical investigation.

1.5 Renormalization Group and the continuum limit

We constructed a lattice gauge theory which in the naive continuum limit a → 0 repro-
duces the correct continuum gauge theory. This is not the only possible construction and
we just chose the simplest one. However, it is still not clear if the continuum limit of such
theories exists and is indeed a gauge invariant field theory.

A first requirement is that in the continuum the quark masses (that we generally call m)
must be finite. The lightest mass is related to the inverse of the largest correlation length
of the theory on the lattice. If we denote with a hat the dimensionless quantities on the
lattice, we realize that

ξ̂−1 ∼ m̂ = ma −−−→
a→0

0 , (22)

that is the continuum limit emerges as a critical region of the lattice theory, where the
(dimensionless) correlation length diverges. Indeed, at a critical point the system looses
memory of the underlying lattice structure. To reach the critical point we must tune the
parameters of the theory. In the pure gauge formulation only one parameter is present,
the bare coupling g (which is void of any physical meaning), and it must be tuned to a
critical value g? to obtain a diverging correlation length. Therefore, while shrinking the
lattice spacing we must tune the bare parameter in order to obtain a critical lattice theory
and finite physical quantities.

For a dimensionful observable O, with mass dimension dO, we denote with Ô its dimen-
sionless lattice counterpart, which will depend on the bare coupling and can be computed
numerically form a lattice simulation

O(g, a) =

(
1

a

)dO
Ô(g) . (23)

Requiring that the lhs approaches a physical finite limit for small lattice spacing

O(g(a), a) −−−→
a→0

Ophys , (24)

3Notice that σ is a non-local order parameter, since it is built from non-local objects, such as Wilson
or Polyakov loops. Elitzur theorem [1] indeed rules out the possibility of transitions with local order
parameters in any lattice gauge theory.
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we can determine g(a). This functional dependence should be universal for sufficiently
small lattice spacing a in order to allow for all observables to be finite. We can determine
the function g(a) setting up a Callan-Symanzik equation and then applying perturbation
theory expanding the beta-function around g = 0. The requirement of finite physical
observables, eq. (24), reads for small a

dO

d ln a
(g(a), a) = 0 ,

(
∂

∂ ln a
+

∂g

∂ ln a

∂

∂g

)
O(g(a), a) = 0. (25)

Perturbation theory gives for a SU(N) pure gauge theory (with dynamical fermions we
would find terms proportional to the number of quark flavors)

β(g) ≡ − ∂g

∂ ln a
= −β0g

3 − β1g
5 +O(g7) ,

β0 =
1

(4π)2

11

3
N ,

β1 =
1

(4π)4

34

3
N2 .

(26)

From the last equation we see that since β(g) is negative in the small coupling region,
the RG flow will bring g close to the fixed point g? = 0. Therefore the continuum
limit corresponds to vanishing bare coupling. This fact is called asymptotic freedom.
Integrating the beta function we can find the relation between g and a up to this order

a(g) =
1

ΛL
R(g) =

1

ΛL
(β0 g

2)
− β1

2β2
0 exp

(
− 1

2β0g2

)
. (27)

Here ΛL is an integration constant and it is used to set the scale by fixing the value of
g at some a. The scale ΛL is a physical scale in term of which physical quantities can
be measured4, in contrast with the non-physical lattice spacing a, introduced only as a
possible regularization of the theory.

Using eq. (27) in eq. (23) we can see that

Ô(g) ∼
g→0

ĈO(R(g))dO , (28)

where ĈO is a dimensionless constant. In the numerical simulation we can study Ô(g)
as function of the bare parameter, looking for this kind of scaling behavior. In general
we expect the scaling region to be close to g? = 0. However, for too small values of the
bare parameter the lattice spacing a will also be very small and the finite lattice used for
the numerics will actually correspond to a very small real space sample, smaller than the
typical scale of the physics we are interested in. Therefore the calculation will suffer of
severe finite size effects. In conclusion, on a finite lattice and varying the bare parameter,
we expect to find a scaling window where the behavior of the observables is well described
by eq. (28). Using eq. (24) we can relate the physical observables to the dimensionless
quantities measured in the scaling window

Ophys = ĈO ΛdOL . (29)

4The scale ΛL can be related to the famous ΛQCD and it plays the same role.
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This means that performing a numerical calculation physical quantities can be measured
in terms of the physical scale ΛL, which must be determined by comparing the numerical
results with the experiments.

One can also study the continuum limit by varying the number of lattice sites and the
couping accordingly, following eq. (27), thus keeping the physical lattice size constant.
One can study just a few values of the coupling constant, since decreasing g the number
of lattice sites quickly becomes prohibitive. One should then perform an extrapolation
to g = 0. Finally in principle one should also perform an infinite space-time limit, by
studying the system for different physical dimensions,

2 The numerical computation

2.1 Structure of the program

The program that was used to simulate the pure gauge theory on the lattice has a very
simple structure. The main object is the lattice, and the gauge variables are set on its
links: for SU(2) and SU(3), the link variables are represented by the usual 2×2 and 3×3
unitary matrix representations, while for the U(1) gauge group unitary complex numbers
where used and for the Zn group just an integer number representing the discrete phase
was stored.

The aim of the program is to compute average values or correlators of the form of eq. (16).
These kinds of integrals can be computed using a Monte Carlo technique, generating
lattice configurations distributed according to the probability distribution function (pdf)
exp(−SG[U ]) and computing averages and correlators as the arithmetic averages over
these sampled configurations. Since it is in general not possible to generate configurations
distributed according to a generic pdf, the class of Monte Carlo methods provide a way
to set a Markov chain in the space of configurations. The Markov process will end in
an equilibrium distribution where averages are computed on. The Markov chain must
be set such that it efficiently has access to the whole configuration space, visiting more
often the most probable configurations. This ergodicity requirement may be a problem if
configuration space is split in two or more topologically different sectors, as for example
if a spontaneous symmetry breaking is present.

The main function of the program will start with the initialization of the system to a
certain configuration. It may be “cold”, if all link variables are set to unity, “hot” if the
group elements are chosen at random, or a mixed configuration. After the initialization,
a loop over a certain amount of Monte Carlo iterations is performed in order to make the
system reach the equilibrium configuration (thermalization). To understand when the
system is thermalized, the relaxation of the average value of some simple observables (like
the action) has been studied. Different initializations are taken into account and when
the chosen observables relax to a common value for both hot and cold start, the system
is considered in equilibrium.

After thermalization, observables can be measured. Another loop of Monte Carlo steps
is performed: at each step the lattice configuration is updated and subsequently the
observable is computed on the new configuration. The final estimator of the observable
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will be the average over all the measurements along the Markov chain.

The error has been computed as the estimator of the statistic error for uncorrelated
random variables. This actually severely underestimates the error, since any configuration
depends on the previous one along the chain and therefore they are correlated. One should
study the correlation time (here I mean computer time) after which two configurations
can be considered independent and modify the error estimation accordingly. In order
to partially cure the problems due to correlation, since the computation of observables
is very time consuming, one can perform more than one Monte Carlo updates before
each measurement. In this way subsequent configurations with measurements will be
less correlated. How to decide how many of these updates without measurements may
be performed is a matter of choice. A better decision may be taken by studying the
correlation time of the Markov chain.

2.2 Link variable storage

A large part of the simulation time is spent multiplying the gauge group link variables,
therefore it turns out to be more convenient to loose efficiency in storing the link variables
while decreasing the computational effort of group elements multiplication

U(1): group elements are stored with real and imaginary parts, instead of a single real
phase, in order to avoid the use of sin and cos functions.

SU(2): four real elements are stored instead of three according to the decompositions in
term of Pauli matrices

U = a0I + i~a · ~σ , (30)

with a2
0 + |~a|2 = 1.

SU(3): the gauge group has eight independent parameters, however twelve real numbers
are stored, corresponding to the first two rows of the unitary 3 × 3 matrix. The
third row is constructed from the first two according to

U =

 ~u
~v

~u∗ × ~v∗

 . (31)

The vectors ~u and ~v must be normalized to unity and mutually perpendicular, thus
ensuring that these properties will be shared by the vector of the third raw, too.

Zn: the group elements are stored as integer numbers corresponding to the fraction of
the unit circle of the corresponding root of unity.

Except for the case of Zn, after some computations, due to accumulation of rounding
errors in multiplying group elements, the gauge matrices could be not unitary any more.
The link elements must therefore be regularly projected to unitarity.
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2.3 The Metropolis algorithm

The Monte Carlo updates have been performed (except for the SU(2) and Z2 case, see
next section) using a simple Metropolis algorithm, by proposing and testing a new link
variable subsequently for one link at a time. A Monte Carlo step was completed after
testing all sites in the lattice. When testing a single link variable Uµ(n), a new candidate
is proposed Uµ(n)′. If the new total action is equal or less than the previous one, the
new candidate is accepted with probability one, otherwise it is accepted with probability
exp(−∆S). This procedure assures that the transition probabilities in the space of lattice
configurations will satisfy detailed balance and therefore an equilibrium solution must
exist and it is the desired one.

On a hypercubic lattice in d spacetime dimensions, each link is shared by 2(d − 1) pla-
quettes. The local contribution of the action which contain the contribution of a single
link is given by

S[Uµ(n)]loc =
2

g2

2(d−1)∑
i=1

Re Tr [I− Uµ(n)Pi] =
2

g2
Re Tr [2(d− 1)I− Uµ(n)A] , (32)

where Pi is the contribution of the i-th plaquette without the link being tested and A is
the sum of such “staples”

A =

2(d−1)∑
i=1

Pi =
∑
ν 6=µ

(
Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂)

+ U−ν(n+ µ̂)U−µ(n+ µ̂− ν̂)Uν(n− ν̂)
)
.

(33)

The change in the action is

∆S = S[Uµ(n)′]loc − S[Uµ(n)]loc = − 2

g2
Re Tr [(Uµ(n)′ − Uµ(n))A] . (34)

Since the computation of the products of gauge group is by far the most time consuming
part of the program, it is convenient to perform many proposal and acceptance test on
the same link variable before moving to the next one. We compute the sum of staples
just once and then by iterating the Metropolis algorithm, we have more chances that the
link variable is changed, and the configuration space is thus better spanned. This multi-
hit Metropolis algorithm have been performed with 5 ÷ 10 repetitions, depending on the
simulation. In the limit of infinite repetitions one should recover the results of the heat
bath algorithm, presented in the next section. In this way also effects due to correlations
are somehow reduced.

An important parameter of the simulation is the acceptance ratio, that is the ratio of
the accepted single link Metropolis updates over the total proposed ones. A too small
acceptance ratio would be costly, since many configurations would be proposed but not
accepted, while a too high acceptance ratio means too small changes in the action and
leads to slow motion in configuration space and high correlations. Usually one tries to
keep the acceptance ratio around 0.5, which is a reasonable compromise. To control
the acceptance ratio, we introduce a parameter ε in the choice of the proposed new link
variable. New link variables cannot be too far from the previous ones, otherwise they will
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never be accepted. The idea is to generate a random group element X(ε) close to the unity
element and multiply the old link variable with this random matrix, Uµ(n)′ = X(ε)Uµ(n).
The parameter ε controls how much the matrix X is close to unity. For example, for
SU(2) matrices, one can generate a random number r between 0 and ε, and three random

numbers bi in the interval (−1/2, 1/2). Then ai = ε/|~b|2 and a0 =
√

1− ε2. Random
SU(3) matrices close to I3 are generated starting from embedded random SU(2) matrix,
while a random U(1) phase is simply found by generating a random φ ∈ (ε, ε) and setting

X = (1 + iφ)/
√

1 + φ2.

Below is reported a schematic version of the code used for the implementation the
Metropolis sweep.

1 for (site_index = 0; site_index < Nsite; ++site_index) {

2 /* get lattice vector n from site index */

3 n = get_lvector(site_index);

4

5 for (mu = 0; mu < dimension; ++mu) {

6 /* get gauge field to be modified and compute the sum of staples */

7 U = gauge_field.at(site_index).at(mu);

8 A = computeStaples(n, mu);

9

10 /* perform the Metropolis move */

11 for (i = 0; i < trials; ++i) {

12 proposal++;

13 X.random(eps);

14 U_candidate = X * U;

15 DeltaS = - 2./(g2) * ( (U_candidate - U) * A ).getReTr();

16 if ( DeltaS <= 0. ) {

17 gauge_field.at(site_index).at(mu) = U_candidate;

18 U = U_candidate;

19 accepted++;

20 } else {

21 R = rand0to1();

22 if ( R < exp(-DeltaS) ) {

23 gauge_field.at(site_index).at(mu) = U_candidate;

24 U = U_candidate;

25 accepted++;

26 }

27 }

28 } /* for cycle on metropolis trials */

29 } /* for cycle on directions */

30 } /* for cycle on sites */

31 acceptance_ratio = accepted / proposal;

12



2.4 The Heat Bath algorithm for SU(2)

In the heath bath algorithm one directly generates the new link variable Uµ(n)′ according
to the local probability distribution defined by the surrounding staples

dP (U) = dU exp

(
2

g2
Re Tr[U A]

)
. (35)

Notice that dU is the Haar measure and in general it is not possible to generate new link
variables in such a way. However, for the gauge group SU(2) there is a simple way to
implement the heat bath algorithm. The payback is that the correlations are reduced
with respect to the Metropolis case, since the new link variable will be independent from
the old one (we are not proposing a new group element close to the previous one), and
the links are updated very efficiently since the link variable always changes (there is no
acceptance test).

What allows an efficient heat bath algorithm is the fact that the sum of two SU(2)
matrix is proportional to another SU(2) matrix, the proportionality constant being the
determinant of the matrix. In this way the sum of staples can be written as

A = a V with a = detA , V ∈ SU(2) . (36)

If we define the SU(2) matrix X = UV , we can write the local probability distribution
for X

dP (X) = dX exp

(
2

g2
aRe Tr[X]

)
, (37)

where the Haar measure is simply given by dX = 1
π2 d4x δ(x2

0 + |~x|2 − 1). Going to polar
coordinates in (x0, ~x), using standard formulas for the δ-function and remembering that
TrX = 2x0, an elementary calculations leads to

dP (X) =
1

2π2
d cos θ dϕdx0

√
1− x2

0 e
2
g2 a x0 . (38)

The pdf for the variables x0, θ and ϕ factorize while |~x|2 has already been integrated
out and it is fixed to one. There are standard ways to draw a random variable from an

exponential distribution such as e
2
g2 a x0 . This variable is then accepted with an accep-

t/reject step with the probability given by the square root
√

1− x2
0. The variables xi are

generated uniformly on the unitary 3-dimensional sphere.

A possible (pseudo)code to implement these ideas is reported below. It has been used for
the simulations regarding the SU(2) gauge group.

1 for (site_index = 0; site_index < Nsite; ++site_index) {

2 /* get vector n from site index */

3 n = get_lvector(site_index);

4

5 for (mu = 0; mu < dimension; ++mu) {

6 /* compute the sum of staples relative to the tested gauge field */

7 A = computeStaples(n, mu);

8 a = sqrt( ( A(0,0)*A(1,1) - A(0,1)*A(1,0) ).Re );

9
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10 if (a == 0.) { /* if detA=0, get a random SU(2) element */

11 for (i = 0; i < 4; ++i) x.at(i) = 2.*rand0to1() - 1.;

12 Unew = SU2matrix(x);

13 gauge_field.at(site_index).at(mu) = Unew;

14 } else {

15 /* compute V */

16 v.at(0) = ( A(0,0).Re ) / a;

17 v.at(1) = ( A(0,1).Im ) / a;

18 v.at(2) = ( A(0,1).Re ) / a;

19 v.at(3) = ( A(0,0).Im ) / a;

20 V = SU2matrix(v);

21

22 do {/* generate x0 */

23 r1 = 1. - rand0to1();

24 r2 = 1. - rand0to1();

25 r3 = 1. - rand0to1();

26 lambda2 = -(g2/(a*8.))*( log(r1) + cos(2.*PI*r2)*cos(2.*PI*r2)*log(r3) );

27 r = rand0to1();

28 } while ( (r*r) > (1.-lambda2) );

29

30 x.at(0) = 1. - 2.*lambda2;

31

32 do { /* generate x1, x2, x3 uniformly distributed in the 3-sphere of

radius \sqrt{1-x_0^2} */

33 r1 = 2.*rand0to1() - 1.;

34 r2 = 2.*rand0to1() - 1.;

35 r3 = 2.*rand0to1() - 1.;

36 rsquare = r1*r1 + r2*r2 + r3*r3;

37 } while ( rsquare > 1. );

38

39 norm = sqrt( (1. - x.at(0)*x.at(0)) / rsquare );

40 x.at(1) = r1 * norm;

41 x.at(2) = r2 * norm;

42 x.at(3) = r3 * norm;

43

44 /* get new link variable */

45 X = SU2matrix(x);

46 Unew = X * V.getInverse();

47 gauge_field.at(site_index).at(mu) = Unew;

48 }

49

50 } /* for cycle on directions */

51 } /* for cycle on sites */

2.5 Measurements and analysis

As already mentioned, I concentrated on the determination of the parameter σ discussed
in sec. 1.4. This parameter can give strong hints on the presence or absence of confinement,
even in the absence of dynamical charged fermions.
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In order to extract the value of σ from the numerical calculations, Monte Carlo averages of
Wilson loops or Polyakov loops have been computed. To have a better statistics, we need
to compute the average over all Wilson loops of the lattice with time extension t = nta
and spatial extension r = nra (actually, due to rotational invariance, all Wilson loops in
any fundamental plane of the lattice can be taken into account, even in the pure spatial
planes). For the same reason all possible products of Polyakov loops at a given distance
r have been averaged out.

We discussed in sec. 1.4 that in the infinite lattice temporal size both Polyakov loops and
Wilson loops can be parametrized in terms of the static qq̄ potential V (r)

〈W [U ]〉 ∼ e−nt V̂ (r) , 〈P (~m)P (~n)†〉 ∼ e−Nt V̂ (r) (39)

If we compute the Wilson or Polyakov loops for different values of r we can study the
behavior of the potential. If we parametrize the potential as in eq. (21), we can recover
the various parameters from a fit of the computed data.

Actually, a problem that one encounters is the fact that sometimes the exponential be-
havior found in eq. (39) makes the values of the Wilson and Polyakov loops very small
and statistically indistinguishable from zero. For small values of the inverse coupling
β = 2N/g2, often only loops of dimension up to 2 lattice links or even 1 (that is the
fundamental loop, the plaquette) are sensibly different from zero. In this case a fit is
impossible since we have too few points. To overcome the problem, we can add a point
setting 〈W 〉 = 1 for r = 0 (that is V (0) = 0) or we can assume a pure linear behavior
in the potential, thus reducing the number of unknown parameters to just one, that is σ
(remember that the strong coupling expansion indeed shows that in this regime the linear
contribution is the leading one). This techniques have proven to give good results, despite
their intrinsic ambiguity.

For a more detailed discussion of the numerical techniques used to simulate pure gauge
theories, see [2].

3 Results and discussion

3.1 U(1) symmetry

The U(1)-symmetric, 2-dimensional case can be solved analytically [3]. The expectation
value of the Wilson loop can be computed exactly. Indeed, since the gauge group is
Abelian, the Wilson loop can be replaced by the product of the single plaquettes enclosed
in the loop. Let us call UP the product of the link variable around the plaquette P

〈WL(r,t)〉 =

∫
DU

(∏
P∈L UP

)
e
β
2

∑
P (UP+U†

P )∫
DU e β2

∑
P (UP+U†

P )
. (40)

Exploiting the gauge symmetry, we can fix the gauge in such a way that the link variables
along the time direction are set to one. The plaquette reduces to

UP = eiθP , θP = θ1(n0, n1)− θ1(n0 + 1, n1) . (41)
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With a change of variables, the integral can be rewritten in terms of θP

〈WL(r,t)〉 =
∏
P∈L

∫ π
−π dθP e

iθP eβ cos θP∫ π
π

dθP eβ cos θP
. (42)

The integral is easily computed in terms of modified Bessel functions

〈WL(r,t)〉 =

(
I1(β)

I0(β)

)nrnt
, (43)

and the result is that the potential is linear in nr, with

V̂ (nr) = − lim
nt→∞

1

nt
ln〈WL(r,t)〉 = σ̂nr , σ̂ = ln

(
I0(β)

I1(β)

)
. (44)

The 2 dimensional Abelian theory is confining, even in the continuum limit. Such limit
can indeed be taken simply studying the naive one. The coupling constant g has the
dimension of a mass and therefore one is led to define the dimensionful coupling constant
e = 1

ag. By requiring e to be finite in the continuum limit, then β = 1/(e2a2) must
diverge and considering the asymptotic expansions of the modified Bessel functions for
large β one can see that the naive limit a → 0 immediately gives finite physical results
and the potential still grows linearly with the distance

V (r) =
1

2
e2r . (45)

This example is not very illuminating, since many of the features of the generic lattice
gauge theories are not present, such as a transition between confining and non-confining
phase or a non-trivial RG flow. nevertheless it gives the chance to test the predictions
of the simulation in a case where the exact analytic result is known. Fig. 1 shows the
numerical result together with the exact one of eq. (44).

The situation changes drastically if we study the system in 4 dimensions (quenched QED).
Large and small β expansions show that the system has two different phases: confining
and non-confining. This is in agreement with the fact that in the continuum QED is
known to be non-confining. The numerical computation confirmed what expected, the
results are shown in fig. 2. In the non-confining phase the potential decreases with the
distance. It is therefore possible to separate the U(1) charges and to see free charged
states. The potential for certain values of the parameter β is shown in fig. 3.

3.2 SU(2) symmetry

The analysis for the SU(2) symmetry can be done quite efficiently thanks to the heat
bath algorithm. No phase transition is found and the theory is confining probably for all
values of β. In fig. 4 the results for the string tension are reported. The scaling window is
clearly visible and the fit in that region with the one-loop result of RG gives an estimate
for Ĉσ that can be used to find ΛL, once compared with the experiments. These results
coincide with the one found by [4].
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Figure 1: String tension for the U(1) gauge symmetry in 2 dimensions. The agreement of the
numerical data (obtained on a lattice with Ns = 302) with the exact analytical result is satisfying.
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Figure 2: String tension for the U(1) gauge symmetry in 4 dimensions. The data are taken from
a lattice with Ns = 94. The confining phase (σ 6= 0) and the non-confining one (σ = 0) are
clearly present. The analytical result valid for small β is also shown for comparison.
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Figure 3: Potential for the U(1) gauge symmetry in 4 dimensions for some value of the parameter
β in the non-confining phase. The data are taken from a lattices with varying lattice dimensions,
such that the physical dimension is essentially the same in all cases. The potential tends to zero
for large distances. The fit is performed with the data with β = 6.99. The fit gives σ ∼ 0,
A ∼ 0.2 and B ∼ 1, in terms of the parametrization of eq. (21).
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Figure 4: String tension for the SU(2) symmetric case on a lattice with Ns = 94. The analysis
was performed with the heat bath algorithm.
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3.3 SU(3) symmetry

For the SU(3) case the computational effort grows a lot, compared with the two previous
cases. Only a few values of β have been considered and the lattice extension was tuned
according to (27) in such a way that the physical space-time dimensions were almost
constant. The potential is shown in fig. 5.
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Ns=16
4
, β=7.16

Ns=13
4
, β=6.99

Ns=10
4
, β=6.77

Ns=8
4
, β=6.58

Figure 5: Potential for the SU(3) gauge symmetry in 4 dimensions for some value of the parameter
β. Lines are drawn just to guide the eye. The data are taken from a lattices with varying lattice
dimensions, such that the physical dimension is essentially the same in all cases. The potential
is found to grow linearly for large distances.

With the chosen values of β we should already be in the scaling region, so we expect σ to
scale as in eq. (28). The analysis is shown in fig. 6, where we fit the data with the one-
and two-loop result for the function R(β). Actually the fit is not very precise (and the
error bars are very large if compared with the difference in subsequent points), probably
with a larger statistics (which would require an optimization of the computer program) a
better result may be found. Some improvement can also be obtained taking into account
more terms in the loop expansion (which is actually valid for small β). Despite the poor
result, confinement is clearly present.

3.4 Zn symmetry

Not only continuous gauge symmetries, discrete gauge symmetries can be studied as well
on the lattice. We concentrated on the Z2 case, for which a simple implementation of the
heat bath algorithm is possible.

It is possible to show that in two dimension the Z2 lattice gauge theory can be mapped
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Figure 6: String tension for the SU(3) gauge symmetry in the scaling region, obtained from
the fit of the data shown in fig. 5. The one- and two-loop result for the scaling relation cannot
approximate very well the numerical data in this regime.

onto the 1-dimensional Ising model (see for example [5]). As it is well known, this model
does not show any symmetry breaking. This is indeed what the simulation also found,
the result is shown in fig. 7.

Things change when we consider the 3-dimensional Z2-invariant lattice. If we consider
different couplings βt and β in the time and space directions, we can take the limit of
continuous time by simultaneously taking

βt →∞ , β → λe−2βt . (46)

This fact can be seen using the transfer matrix formalism. In this limit, the system can
be mapped onto the 3-dimensional Ising model with temperature λ−1 (a proof of this
statement can again be found in [5]). This model is known to show a second order phase
transition for some critical value λ−1

c . Therefore we expect the 3 dimensional Z2 lattice
gauge theory to show a phase transition as well. This is indeed what was found from the
numerics, the results are shown in fig. 8 and 9, where the transition is clearly present. In
fig. 10 the thermalization for different values of β above and below the critical point are
shown. The effect of critical slowing down is present around the transition.

In our simulations we kept the same coupling constant both in the time and space direc-
tions. The correspondence with the 3-dimensional Ising model and the relations of eq. (46)
are true only in the limit of continuous time. However, we can forget for a moment about
this and pretend that the gauge theory is equivalent to the 3-dimensional Ising model at
temperature λ−1 = β−1e−2βt for any value of β and βt. In this case, given that the critical
value at which we found the transition is βc ∼ 0.74 (β = βt in our simulation) we can
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Figure 7: String tension for the Z2 gauge symmetry. The data are taken from a lattice of
dimension Ns = 802. No transition is present. The analytical result of the small β expansion is
also shown.
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Figure 8: String tension for the 3-dimensional Z2 lattice gauge theory. The transition is clearly
present. Data are obtained from a lattice of dimension Ns = 20× 20. The small β expansion is
also shown.
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Figure 9: Detail of fig. 8 around the critical point. The transition is found for β ∼ 0.74÷ 0.75.
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Figure 10: Thermalization for the 3-dimensional Z2 gauge theory for different values of β above
and below the critical point. Thermalization is much slower in the vicinity of the transition
(critical slowing down).
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get the critical value for the Ising model, namely λ−1
c = λIsing

c ≈ 0.308. With this critical
value and exploiting again the relation between λ and β (this time for the values of the

Ising model), that is λIsing = βIsinge2βIsing

, we can find the critical value of the inverse
temperature for the Ising model βIsing

c ≈ 0.204. Despite the very crude approximations,
motivated by presumably wrong assumptions, the value that we find is only within a
10% from the true critical inverse temperature βIsing

c = 0.222. However, only a better
investigation, independently varying the coupling constants in time and space directions
may possibly confirm that this result is somehow well-grounded.

3.5 Finite temperature

We can also study the system at thermal equilibrium at finite temperature. The partition
function for a general quantum mechanical system with Hamiltonian Ĥ at temperature
T is given by

Z(T ) = Tr
[
e−βT Ĥ

]
, (47)

where βT is the inverse temperature βT = 1/(kBT ) and must not be confused with the
inverse of the gauge coupling constant (from now on we will consider kB = 1). With the
standard Suzuki-Trotter decomposition we can transform the partition function in a path
integral over field configurations. The result will be identical to the one of the dynamical
theory at zero temperature. However we are now assuming to be at equilibrium, therefore
the fields will not have any time dependence and the role of the time is now played by the
inverse temperature βT . We do not assume an infinite time extent of the system, instead
we consider a finite extent, with the upper value related to the finite inverse temperature.
The partition function can be written as follows

Z(T ) =

∫
DU e−SE [U ] , (48)

with

SE [U ] =

∫ βT

0

dt

∫
R3

d3xL(U(t, ~x), ∂µU(t, ~x)) . (49)

We see that the program used so far can be used also to study the system at equilibrium
at finite temperature. Only the interpretation of the results will change. An important
point is that in the zero temperature analysis we were interested in the results for the
infinite space-time volume limit, in the sense that we needed space-time extents larger
than the correlation lengths of the system. In this new perspective space is still considered
in this limit, while the physical extent of time (which must interpreted as the inverse
temperature) is limited to βT . For a finite lattice the space extent is aN while the time
extent is aNT = βT = 1/T . The continuum limit corresponds to a → 0 while holding
the physical spatial extent aN and the inverse temperature aNT fixed. Finite size effects
will decrease for large value of the ratio N/NT , therefore for the simulation we should
consider lattices with time extension smaller than the spatial one.

We are interested in looking for a confinement-deconfinement transition driven by the
temperature. Such a transition is a fundamental issue for many physical problems, as
for example the early phases after the big bang and the physics of neutron stars or other
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astronomical compact objects. To study this transition we will focus on Polyakov loops.
We argued that the correlator between two Polyakov loops is related to the free energy
of a pair of static quark and antiquark according to

〈P (~m)P (~n)†〉 = e−aNTFqq̄(a|~m−~n|) = e−Fqq̄(r)/T . (50)

At large distances we expect factorization

lim
a|~m−~n|→∞

〈P (~m)P (~n)†〉 = |〈P 〉|2 , (51)

where the spatial dependence of the lhs can be dropped thanks to translational invariance
and the spatial average may be considered. When the theory is confining, if the two quarks
are taken far apart then Fqq̄ must grow indefinitely and therefore 〈P 〉 must vanish. On
the contrary, if the theory is not confining, 〈P 〉 is finite

〈P 〉 = 0 ⇔ confinement

〈P 〉 6= 0 ⇔ no confinement .
(52)

We can also interpret the expectation value of a single Polyakov loop as the probability
to observe a single static charge

|〈P 〉| ∼ e−Fq/T . (53)

If the theory is confining Fq is infinite, while if it is not confining Fq is finite.

Since T = 1/(NTa), in order to study the system at different temperatures we can vary
the lattice extent in the “time” direction NT , or we can vary the lattice spacing a by
tuning the gauge coupling constant β = 2N/g2. When β increases the lattice spacing a
decreases and therefore T increases. To set the scale of temperatures one should study the
scaling of some observables and compare it with some experiment, thus fixing the value
of ΛL and hence a5.

In fig. 11 we plot the modulus of the expectation value of the Polyakov loop for the SU(3)
symmetric lattice gauge theory. The transition is clearly present and a detailed study of
the physical dimensions of the system would fix the critical temperature to Tc ≈ 270 MeV.
This transition has been widely studied and it was found to be weakly first order.

The finite temperature transition in quenched QCD coincides with the spontaneous sym-
metry breaking of the center symmetry of the gauge group SU(N), that is ZN . This
can be seen from the Polyakov loops. Indeed if we perform a center transformation, that
is a gauge transformation where all gauge elements of the temporal links of a time slice
are multiplied by an element of the center U0(t0, ~n) → zU0(t0, ~n), the action is invariant
while the Polyakov loops will be multiplied by this center element. This is due to the fact
that the action is computed as the sum of trivially closed loops and any of such loops
will not be affected by a center transformation. Indeed any trivially closed loop with a
component in the time direction will be multiplied by z when the loop crosses the time
slice the first time and by its conjugate z∗ when it comes back and crosses the time slice

5Analogously one could use the Sommer parameter to find the physical value of the lattice spacing a
(for a definition of the Sommer parameter and a discussion about how to use it to fix the physical scale,
see for example the discussion in [2]).
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Figure 11: Modulus of the expectation value of the polyakov loop |〈P 〉| as function of the inverse
coupling β. Increasing β means increasing temperature T . The simulation was performed on a
lattice of dimension Ns = 123 × 4.

for the second time in the opposite direction. Since the center elements commute with all
elements of the gauge group, they cancel out from the loop. This is not true any more
for the Polyakov loops, since they wind around the temporal direction and do not close
trivially. They are multiplied just once times the center element and therefore they are
not invariant P → zP .

The expectation value of the Polyakov loop will be zero in the unbroken phase

〈P 〉 =
1

N
〈
N−1∑
n=0

znP 〉 = 0 , (54)

since the sum of the elements of the center ZN is zero. We are in the confining phase.
However this ends to be true in the broken phase, and P acquires a non-zero expectation
value. Of course on a finite lattice we cannot have a true phase transition to a broken
phase (an infinite volume is needed) and if we wait a large enough time, the system will
tunnel from one phase to another, eventually spanning all the phase space and 〈P 〉 is
therefore forced to vanish. In our simple simulations, the simulation time was shorter
than the persistence time of the system in a single phase, therefore we did not need to
manually cure this problem. However, systematic errors due to tunneling are not under
control in this way. To somehow avoid the problem one may plot 〈|P |〉 instead of |〈P 〉|,
the former being unaffected by tunneling from one phase to another. The two values
coincide in the infinite space limit.

Early studies of the Z3 gauge spin model [6, 7] showed a first order phase transition, in
agreement with the result for the finite temperature transition of SU(3) QCD.
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In fig. 12 we plotted in the complex plane the value of the Polyakov loop on single gauge
configurations. Black dots refer to a system with T < Tc, which is in the unbroken,
confining phase. Colored dots instead are computed at T > Tc, when the system is in the
broken, non-confining phase. The values of P in the broken phase concentrate along the
center phases. In order to get the latter points, three runs have been performed starting
from a “cold” configuration with all link variables set to unity and performing a center
transformation just before starting the thermalization. This led the Monte Carlo chain
in the desired phase.
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Figure 12: Polyakov loops in the complex plane on single gauge configurations. Black dots
are computed in the unbroken phase (confining), T < Tc, while colored dots are computed in
the broken phase (non-confining), T > Tc. The data are taken from a lattice of dimension
Ns = 123 × 4. For T > Tc the system was driven in the desired phase by performing a center
transformation right after the “cold” initialization.

4 Conclusions and possible improvements

The program has been tested in the case were the exact results were known and it gives
correct results. In the other cases it gave results compatible with the one found in the
literature. However, if a deeper analysis has to be done, more statistics is needed and
the program needs to be improved to be faster. A better analysis of errors must be
implemented too. Despite the various tricks used to lower the correlations, there is still
no control on this point and errors are probably underestimated. A deeper analysis must
be performed such that the correct estimation of the error could be found.

As it is, the program could be improved by adding a function to compute the hadron
masses in the quenched approximation. The meson and baryon masses are computed from
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the lowest energy states extracted from the correlators of meson and baryon interpolators
(that is combinations of operators such as q̄Γq, where Γ is a combination of γ matrices).
Recalling the fact that the fermion contribution to the action is quadratic, the average of
a general observable O can be written as

〈O〉 =
1

Z

∫
DU e−SG[U ]D[ψ, ψ̄] e−SF [ψ,ψ̄,U ]O[ψ, ψ̄, U ]

=
1

Z

∫
DUe−SG

∫
D[ψ, ψ̄]e−SF [ψ,ψ̄,U ]O[ψ, ψ̄, U ]∫

D[ψ, ψ̄]e−SF [ψ,ψ̄,U ]
det[Dψ]

=
1

Z

∫
DUe−SG〈O[ψ, ψ̄, U ]〉F det[Dψ] ,

(55)

where Z =
∫
DUe−SG[U ] det[Dψ] and Dψ[U ] is the Dirac and color operator in the action

of the fermion ψ, such that SF ∼ ψ̄a
α

(n)Da
α
b
β
(n|m)ψb

β
(m). When the observable O contains

a product of the fermionic operators (as in the case of hadron interpolators), using Wick’s
theorem we can write 〈O[ψ, ψ̄, U ]〉F as a combinations of fermion propagators D−1

ψ . In the
quenched approximation one neglects the contribution of the determinant and keeps only
the fermionic dependence coming from the propagators6. Thus the path integral average
is computed only on gauge configurations and with a pure gauge action. Therefore we
must not change the Monte Carlo part of the algorithm, we only need to add a function
which computes the propagators D−1

ψ . This is not trivial, since we need an efficient way
to invert the matrix Dψ, but in principle it can be done.

Adding dynamical fermions is much more difficult. First of all we would need to introduce
pseudofermions, that is bosons with the same number of degrees of freedom as femions,
in order to deal with the quark fields. Then, when we reintroduce the determinant of
eq. (55), we can put it back in the exponential and it will contribute to the action with a
term −Tr ln[Dψ[U ]]. The action is not local any more and this makes things a lot more
complicated. The Monte Carlo algorithms used so far, which change the action locally,
are no longer efficients and they must be replaced with smarter hybrid algorithms, where
both Molecular Dynamics and Monte Carlo techniques are used. This is not trivial at all
and the program should be essentially completely rewritten.
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